Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/41377
Comparte esta pagina
Título : | Avaliação de filmes metalizados por algoritmos de aprendizagem de máquina através de dados operacionais de processo industrial e de qualidade |
Autor : | BASTOS, Thiago Moura da Rocha |
Palabras clave : | Inteligência computacional; Aprendizagem de máquina |
Fecha de publicación : | 30-jun-2021 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | BASTOS, Thiago Moura da Rocha. Avaliação de filmes metalizados por algoritmos de aprendizagem de máquina através de dados operacionais de processo industrial e de qualidade. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021. |
Resumen : | Os processos industriais de manufatura são parte essencial da revolução tecnológica vivida na atualidade. Dentre esses, a produção de filmes metalizados por deposição contribuem para embalagens, utilizadas principalmente na conservação de alimentos. Com crescimento global médio de 10-15% por ano desse mercado, modelos tradicionais de monitoramento e controle tem representado gargalos para a entrega desses produtos além de elevadas taxas de produtos reprovados, e o uso de novas tecnologias digitais disruptivas como a inteligência artificial pode ser uma alternativa para superar essas dificuldades. Assim, esse trabalho objetiva utilizar sistemas de aprendizado de máquina para interpretação e predição de variáveis de processo e qualidade presentes na produção de filmes metalizados por deposição à vácuo e redução do tempo atual de entrega dos produtos finalizados. Comparando diferentes classificadores de aprendizado de máquina associados a condições diversas de preprocessamento de dados e hiper- parâmetros para a predição de qualidade do produto, o modelo Random Forest apresentou o maior desempenho com 85,4% de acurácia. Foram utilizadas diferentes técnicas de visualização para interpretar as previsões e observar o desempenho dos modelos aplicados. Por outro lado, através da segmentação semântica dos perfis de densidade óptica dos produtos, foi possível a identificação de falhas, e o monitoramento da qualidade final dos filmes produzidos por um modelo de rede neural com 86,67% de acurácia. Além disso, a aplicação das visualizações auxiliam no entendimento e validação dos produtos obtidos no processo de metalização e associados a diferentes condições operacionais sobre os produtos manufaturados. Este estudo de caso demonstra o potencial uso de modelos de aprendizado de máquina para suporte a analistas e operadores na interpretação de variáveis operacionais, oferecendo informações relevantes para monitorar e manter o processo de metalização de filme por deposição a vácuo e servir como base para análises de desempenho e robustez no futuro implementação industrial. |
URI : | https://repositorio.ufpe.br/handle/123456789/41377 |
Aparece en las colecciones: | Dissertações de Mestrado - Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Thiago Moura da Rocha Bastos.pdf | 3,39 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons